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ABSTRACT 

          

       Helmholtz free energy is one of the most important thermodynamic properties for 

condensed matter systems. It is closely related to other thermodynamic properties such as 

chemical potential and compressibility. It is also the starting point for studies of interfacial 

properties and phase coexistence if free energies of different phases can be obtained. 

 

       In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) 

perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-

Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. 

Our results indicate that the perturbation theory provides an accurate approach to the free 

energy calculations of liquid and solid phases based upon comparisons with results from 

molecular dynamics (MD) and Monte Carlo (MC) simulations. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

Research Motivation 

  Interfacial properties between different phases are crucial to phase transformation studies 

such as nucleation and crystal growth, which use the bulk free energy calculations as the 

starting point. There are many different methodologies to compute the free energy. For 

example, molecular dynamics (MD) and Monte Carlo (MC) simulations can give numerically 

exact results, however, these methods are generally time-consuming. Thus, theoretical 

approaches may offer an alternate route for obtaining the free energy calculations efficiently. 

Here a method based on the Weeks-Chandler-Anderson perturbation theory to compute free 

energy is used to illustrate such a theoretical approach. 

 

       The systems we are interested in are Lennard-Jones pair potential as well as the Yukawa 

pair potential. Lennard-Jones pair potential is one of the most common pair potentials with 

both a repulsive short-range part and an attractive long-range part. On the other hand, 

Yukawa pair potential used here is a potential which only has a repulsive term. The two pair 

potentials are quite representative interactions of various thermodynamic systems. 

 

       Our interests in the phase transformation and interfacial properties of such model 

systems require accurate bulk free energies as inputs. However, due to the time limit of a 

Master’s degree, I am not able to finish the interfacial property studies. I only report my work 

on the bulk free energy calculations of these model systems. 
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Thesis Organization 

       Chapter 2 introduces our general method used for the free energy computation as well as 

a brief review of relevant literature. Chapter 3 contains a more detailed introduction to the 

Lennard-Jones pair potential calculation for both solid and liquid phases. Chapter 4 discusses 

my preliminary calculations for the liquid phase of Yukawa pair potential. A summary and 

more discussions could be found in Chapter 5. Conclusions, future plan and 

acknowledgement are also presented in Chapter 5. All references are listed at the end of the 

thesis. 
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CHAPTER 2. GENERAL METHODS 

 

General Methods 

     Let’s assume the pair potential of the system is 𝛷(𝑟), it could be a Yukawa pair potential 

or a Lennard-Jones pair potential or other kinds of pair potentials. According to the WCA 

perturbation theory, the pair potential could be separated into a short-range repulsive part and 

a long-range attractive part. The short-range repulsive part is used as the reference potential 

and the long-range attractive part as the perturbative potential, which are labeled as 𝛷𝑟(𝑟) 

and 𝛷𝑝(𝑟) respectively: 

𝛷(𝑟)=𝛷𝑟(𝑟) + 𝛷𝑝(𝑟).                                                         (1) 

     The exact definition of these two parts is: 

𝛷𝑟(𝑟) = {
𝛷(𝑟) − 𝑉(𝑟),             𝑟 ≤ 𝜆           

0        ,                   𝑟 > 𝜆
                                (2) 

and 

                   𝛷𝑝(𝑟) = {
𝑉(𝑟),               𝑟 ≤ 𝜆
𝛷(𝑟),               𝑟 > 𝜆

                                                 (3) 

where the parameter λ can be tuned to yield accurate free energies.  𝑉(𝑟) is a function 

defined by 𝛷(𝑟) and λ as: 

                 𝑉(𝑟) = 𝛷(𝜆) −
𝑑𝛷(𝑟)

𝑑𝑟 𝑟=𝜆
(𝜆 − 𝑟),                                                  (4) 

which makes the reference potential and the perturbative potential continuous at 𝑟 = 𝜆 

position. 
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     The free energy of system 𝐹[𝜌(𝑟)] could be written as the sum of the reference system 

free energy and a perturbation part in terms of the pair distribution function 𝜌0
(2)

(𝑟1⃗⃗⃗ ⃗,𝑟2⃗⃗⃗⃗ )  of the 

reference system, 

              𝐹[𝜌(𝑟)] = 𝐹0[𝜌(𝑟)] +
1

2
∫ 𝑑𝑟1⃗⃗⃗ ⃗𝑑𝑟2⃗⃗⃗⃗  𝛷𝑝(𝑟12)𝜌0

(2)
(𝑟1⃗⃗⃗ ⃗,𝑟2⃗⃗⃗⃗ ),                               (5) 

 where 𝐹0[𝜌(𝑟)] is the free energy of the reference system. 

  

     The free energy per particle can be simplified by using the angle-averaged correlation 

function in the reference system 𝑔0(𝑟12):   

               𝐹[𝜌(𝑟)]/𝑁 = 𝐹0[𝜌(𝑟)]/𝑁 +
1

2
𝜌 ∫ 𝑑𝑟 𝛷𝑝(𝑟)𝑔0(𝑟),                                  (6) 

    where  𝑔0(𝑟12) is defined as: 

                 𝑔0(𝑟12) =
1

4𝜋𝑉𝜌2 ∫ 𝑑𝛺 ∫ 𝑑𝑟1⃗⃗⃗ ⃗  𝜌0
(2)

(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ ).                                            (7) 

   

     Normally the reference system is mapped to a hard-sphere system due to its availability of 

accurate thermodynamic properties both for the liquid and the solid phases. The pair potential 

of a hard-sphere system is defined as: 

  

                 𝛷𝐻𝑆(𝑟) = {
+∞   ,        𝑟 ≤ 𝑑
0        ,        𝑟 > 𝑑

                                                      (8) 

 where the hard-sphere diameter d depends on the thermodynamic state of the reference 

system and the mapping procedure.  
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    For the WCA perturbation theory, the way to determine the hard-sphere diameter is based 

on the following equation: 

                  ∫ 𝑑𝑟( 𝑒−𝛽𝛷𝑟(𝑟) − 𝑒−𝛽𝛷𝐻𝑆(𝑟))𝑦𝐻𝑆(𝑟/𝑑) = 0,                                        (9) 

where 𝑦𝐻𝑆(𝑟/𝑑) is the cavity function [17-18] and equation (9) leads to 𝐹0 = 𝐹𝐻𝑆 + 𝑂(𝛿2) 

so that we could approximate 𝐹0 by 𝐹𝐻𝑆. Furthermore this condition also yields 𝑔0 = 𝑔𝐻𝑆 +

𝑂(𝛿),  where 𝛿 [1, 4] is a small number defined as: 

                      𝛿 = ∫ 𝑑𝑟
𝜆

0
(

𝑟

𝑑𝐵
− 1)2 𝑑

𝑑𝑟
𝑒−𝛽𝛷0(𝑟),                                             (10) 

 

 where  𝑑𝐵  in the above equation is the Barker-Henderson diameter [16]. In solid state 

calculations we can directly use this Barker-Henderson diameter as the hard-sphere diameter 

while in liquid states some correction to the Barker-Henderson diameter provides a better 

hard-sphere diameter choice, which is defined as: 

                   

                           𝑑 = 𝑑𝐵 (1 +
𝜎1

2𝜎0
𝛿),                                                     (11) 

  where 

                            𝜎0 = 𝑦𝐻𝑆(𝑟 = 𝑑),                                                       (12) 

    

                           𝜎1 = 2𝜎0 + [
𝑑𝑦𝐻𝑆

𝑑𝑥
]𝑥=

𝑟

𝑑
=1.                                                (13) 

      

   Using these approximations, we can rewrite Eq. (6) as: 

           
𝐹[𝜌(𝑟)]

𝑁
=

𝐹𝐻𝑆[𝜌(𝑟)]

𝑁
+

1

2
𝜌 ∫ 𝑑𝑟 𝛷𝑝(𝑟)𝑔𝐻𝑆 (

𝑟

𝑑
).                                           (14) 
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 Hence the calculation of the free energy of a pair potential is reduced to the calculation of an 

effective hard sphere system free energy and its radial distribution function.  I will discuss on 

how to compute the hard-sphere free energy and the perturbation free energy for both solid 

and liquid phases in details in Chapter 3 using the Lennard-Jones pair potential. In Chapter 4 

I will discuss how to apply the perturbation theory to a pure repulsive pair potential such as 

the Yukawa potential. 
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CHAPTER 3. LENNARD-JONES SYSTEM 

 

Overall Introduction 

    For a Lennard-Jones pair potential: 

                       𝑉𝐿𝐽(𝑟) = 4𝜀 (
𝜎12

𝑟12 −
𝜎6

𝑟6),                                                   (15) 

where  
𝜎12

𝑟12 is the short-ranged repulsive part and −
𝜎6

𝑟6 being the long-ranged attractive part. 

According to the discussion in Chapter 2, we have: 

                                 𝛷𝑟(𝑟) = {
 4𝜀

𝜎12

𝑟12 − 4𝜀
𝜎12

𝜆12 ,                         𝑟 ≤ 𝜆           

0  ,                      𝑟 > 𝜆
                       (16) 

 

                   𝛷𝑝(𝑟) = {
−4𝜀

𝜎6

𝑟6 + 4𝜀
𝜎12

𝜆12  ,              𝑟 ≤ 𝜆

𝑉𝐿𝐽(𝑟)   ,              𝑟 > 𝜆
                                    (17) 

where λ is chosen as the position where the potential reaches its minimal value of 𝑉𝐿𝐽(𝑟). 

Here is an example of how the reference potential looks like (see Fig. 1). 
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Fig.1 an example curve of reference potential under ε=0.25, σ=1 and λ=0.5. 

 

Method on BCC Solid Reference Free Energy 

   From Eq. (14), the total free energy is divided into two parts: 𝐹𝐻𝑆[𝜌(𝑟)]/𝑁 represents the 

hard sphere reference free energy and 
1

2
𝜌 ∫ 𝑑𝑟 𝛷𝑝(𝑟)𝑔𝐻𝑆(𝑟/𝑑) represents the perturbation 

free energy. In this part, we will discuss the computation of the hard sphere reference free 

energy. 

   Evans [19] pointed out that the classical density functional theory (DFT) is powerful tool 

for computing the thermodynamic properties of solids as well as liquid phases. According to 

the DFT theory, if we know the one body density 𝜌(𝑟), the hard sphere free energy 𝐹𝐻𝑆[𝜌(𝑟)] 

is a functional of the one body density 𝜌(𝑟). Especially we can separate the free energy 

functional into two parts: an ideal-gas contribution 𝐹𝑖𝑑[𝜌(𝑟)]  and an excess free energy 

functional 𝐹𝑒𝑥[𝜌(𝑟)]: 

                    𝐹𝐻𝑆[𝜌(𝑟)] = 𝐹𝑖𝑑[𝜌(𝑟)] + 𝐹𝑒𝑥[𝜌(𝑟)].                                       (18)          
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 The ideal-gas contribution can be obtained exactly: 

                     𝐹𝑖𝑑[𝜌(𝑟)] = 𝑘𝐵𝑇 ∫ 𝑑𝑉𝜌(𝑟){𝑙𝑛[ 𝜌(𝑟)] − 1}.                                  (19) 

  As the excess free energy functional is not known exactly, many different approximations 

have been developed [20-24]. The functional we use here is the fundamental measure density 

functional proposed by Rosenfeld [25], and further developed by a few different groups [26-

28]. The fundamental measure theory can be implemented in the following steps. 

   First, a series of weighted densities are calculated from one body density: 

                         𝑛𝛼(𝑟) = ∫ 𝑑𝑟′⃗⃗⃗⃗ 𝜌( 𝑟′⃗⃗⃗⃗ )𝜔𝛼(𝑟 − 𝑟′⃗⃗⃗⃗ ),                                               (20) 

where 𝜔𝛼(𝑟 − 𝑟′⃗⃗⃗⃗ )  are density-independent weight functions which are presented here in 

details: 

                           𝜔2(𝑦) = 𝛿 (
𝑑

2
− 𝑦),                                                   (21) 

                           𝜔3(𝑦) = 𝛩 (
𝑑

2
− 𝑦),                                                  (22) 

                           𝜔𝑣2
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑦) = 𝑒𝑦⃗⃗⃗⃗⃗𝛿 (

𝑑

2
− 𝑦),                                             (23) 

                           𝜔(𝑦) = 𝑒𝑦⃗⃗⃗⃗⃗𝑒𝑦⃗⃗⃗⃗⃗𝛿 (
𝑑

2
− 𝑦),                                            (24) 

where δ(x) is the Dirac delta function and Θ(x) the Heaviside step function. 𝑒𝑦⃗⃗⃗⃗⃗ is a unit vector 

along y-axis in the system coordinate system. Eqs. (21) and (22) define 2 scalar functions 

while Eq. (23) represents a vector function and Eq. (24) being a tensor function. 

 

  

Then the excess free energy functional can be obtained as: 

                       𝐹𝑒𝑥[𝜌(𝑟)] = 𝑘𝐵𝑇 ∑ ∫ 𝑑𝑟𝛷𝑖[3
𝑖=1 𝑛𝛼(𝑟)],                                  (25) 
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where 𝛷𝑖 functions are defined as: 

                      𝛷1 =
𝑛2

𝜋𝑑2 ln(1 − 𝑛3),                                              (26) 

                      𝛷2 =
𝑛2

2−𝑛𝑣2
2

2𝜋𝑑(1−𝑛3)
,                                                       (27) 

                             𝛷3 = 𝑓3𝜑3(𝑛3).                                                    (28) 

As you may have noticed, 𝛷3 function doesn’t come with a specific equation. That is because 

the theory has been developed in various versions with different applications. In my code, we 

use the T2 version of 𝑓3 [28] defined as: 

            𝑓3
(𝑇2)

=
3

16𝜋
[𝑛𝑣2
⃗⃗⃗⃗⃗⃗⃗𝑛𝑛𝑣2

⃗⃗⃗⃗⃗⃗⃗-𝑛2𝑛𝑣2
⃗⃗⃗⃗⃗⃗⃗

2
− tr(𝑛3) + 𝑛2𝑡𝑟(𝑛2),                               (29) 

and  𝜑3(𝑛3) used in my code is called CS (Carnahan-Starling) edition [16]: 

               𝜑3
(𝐶𝑆) =

2

3
× [

𝑛3

(1−𝑛3)2 + ln(1 − 𝑛3)],                                           (30) 

which are known to yield accurate thermodynamic properties for the hard sphere system. 

 

     For the one body density 𝜌(𝑟) in a solid phase, it is reasonable to take the sum of identical 

Gaussian profiles centered at the lattice sites 𝑅𝑖
⃗⃗ ⃗⃗  as the density profile, namely 

                𝜌(𝑟) = ∑ 𝜌𝛥(𝑟𝑖 − 𝑅𝑖
⃗⃗ ⃗⃗ ) = (

𝛼

𝜋
)

3

2 ∑ 𝑒−𝛼(𝑟−𝑅𝑖⃗⃗⃗⃗⃗)
2

𝑖 .                                     (31) 

Then, we can also compute the weighted density based on the lattice structure of a solid 

phase: 

               𝑛𝛼(𝑟) = ∑ 𝑛𝛥
(𝛼)

𝑖 (𝑟 − 𝑅𝑖
⃗⃗ ⃗⃗ ).                                                   (32) 
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    If we could map a BCC solid of a reference potential to a BCC solid with hard sphere 

potential, we could use the DFT discussed above to compute the reference free energy. For a 

fixed reduced density 𝜌𝑑3 the hard sphere reference free energy can be obtained from the 

Gaussian parameter α minimization of the hard sphere free energy functional. 

    

Method on BCC Solid Perturbation Free Energy 

    In order to calculate the BCC solid perturbation free energy 
1

2
𝜌 ∫ 𝑑𝑟 𝛷𝑝(𝑟)𝑔𝐻𝑆(𝑟/𝑑), we 

need to calculate the angle-averaged pair distribution function 𝑔𝐻𝑆(𝑟/𝑑). 

 

    The correlation function is calculated by applying the approach of Rascon et al. [29-30]. In 

contrast to a liquid phase, the structural property of a solid state is mainly determined by one 

particle density 𝜌(𝑟). At a large separation, a reasonable approximation to the angle-averaged 

probability distribution is:  

               𝑔(0)(𝑟) =
1

4𝜋𝑉𝜌2 ∫ 𝑑𝑟1⃗⃗⃗ ⃗𝑑𝛺𝜌(𝑟1⃗⃗⃗ ⃗) 𝜌(𝑟1⃗⃗⃗ ⃗ + 𝑟),                                        (33) 

 

If we put Eq. (31) into Eq. (33), we could get the sum of contributions 𝑔𝑖
(0)

 for the i-th shell. 

If 𝑛𝑖 is the coordination number of the i-th shell and 𝑅𝑖 is the corresponding radius, we have 

the equation of 𝑔𝑖
(0)

. 

                 𝑔𝑖
(0)

=
𝑛𝑖

4𝜋𝜌𝑅𝑖
(

𝛼

2𝜋
)1/2 𝑒−𝛼(𝑟−𝑅𝑖)

2
/2+𝑒−𝛼(𝑟+𝑅𝑖)

2
/2

𝑟
.                                       (34) 
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    Then the total correlation function  𝑔𝐻𝑆 : 

                         𝑔𝐻𝑆(𝑟) = ∑ 𝑔𝑖
(0)(𝑟)𝑖 .                                                     (35) 

The calculation of perturbation energy can be performed by combining Eq. (35) and Eq. (17).               

 

 

Results of BCC Solid Free Energy of LJ System 

  For the reduced temperature 𝑇∗ = 𝑘𝐵𝑇/𝜀 =2.74, the excess free energy per particle 
𝛽𝐹𝑒𝑥

𝑁
 is 

calculated and a comparison with Monte Carlo simulations is presented in Table 1[1]. 

Table 1. A comparison between MC simulations and this work on excess free energy per 

particle in solid states for the reduced temperature 𝑇∗ = 𝑘𝐵𝑇/𝜀 =2.74. 

𝜌∗ = 𝜌𝜎3 𝛽𝐹𝑒𝑥

𝑁
(MC) 

𝛽𝐹𝑒𝑥

𝑁
(Thesis) Deviation 

percentage 

η 

1.2 3.138 3.162 0.8% 0.541 

1.3 4.074 4.052 0.5% 0.564 

1.4 5.31 5.19 2.2% 0.584 

1.6 9.01 9.04 0.3% 0.620 

1.8 14.91 14.95 0.3% 0.643 

2.0 23.74 23.79 0.2% 0.660 
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Method on Liquid Hard Sphere Free Energy 

     The hard sphere free energy of the liquid phase also has two parts: an ideal-gas 

contribution and the excess free energy. If density 𝜌𝑑3 is given, then the packing fraction can 

be obtained as 𝜂 =
𝜋𝜌𝑑3

6
. 

     The ideal-gas contribution is 

                          
𝛽𝐹𝑖𝑑

𝑁
= ln(𝜌𝑑3) − 1,                                                   (36) 

  and the excess free energy can be obtained from the Carnahan-Starling equation: 

                          
𝛽𝐹𝑒𝑥

𝑁
=

𝜂(4−3𝜂)

(1−𝜂)2 ,                                                       (37) 

  which is known to yield accurate excess free energies of a hard sphere liquid state.  

 

Method on Liquid Perturbation Free Energy 

    For liquid perturbation calculation, the hard sphere pair distribution function is obtained by 

using the Percus perspective [16]. Namely, the g(r) can be obtained from an inhomogeneous 

one body density profile in the presence of a tagged particle potential at the origin, 

                           𝑔(𝑟) =
𝜌(𝑟)

𝜌
.                                                             (38) 

 

According to literature [1, 2, 3, 4], the density distribution function ρ(r) could be derived 

from the following equation: 

              𝜌(𝑟) = 𝑒𝑥 𝑝 {−
𝛿𝛽𝐹(𝑒𝑥)[𝜌(𝑟)]

𝛿𝜌(𝑟)
+ 𝛽(𝜇 − 𝛷𝐻𝑆(𝑟))},                               (39) 
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where 𝛽𝜇 function is defined as: 

                       𝛽𝜇 = 𝑙𝑛(𝜌𝑑3) + 𝜂
8−9𝜂+3𝜂2

(1−𝜂)3 .                                              (40) 

Thus we can compute g(r) of a hard sphere liquid state using the density functional theory 

and the perturbation free energy would equal to 
1

2
𝜌 ∫ 𝑑𝑟  𝛷𝑝(𝑟)𝑔𝐻𝑆(𝑟/𝑑).                                               

 

Results of Liquid Free Energy of LJ System 

     Using the above method, the calculated g(r) at various liquid densities are presented in 

Fig. 2. 

 

Fig. 2 Pair distribution functions at 𝜌𝑑3=1.0, 0.9, 0.8, 0.7 (from top to the bottom). The top 3 

curves have been shifted by 3.0, 2.0, 1.0 on the y-axis respectively for clear illustration. 
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    In Table 2, the pair distribution function at 𝜌𝑑3=1.0 is compared with the published results 

from MC simulations [5, 6]. 

 

Table 2. A comparison between the MC published g(r) values with my thesis’ g(r) values for 

the reduced density 𝜌𝑑3=1.0. 

r/d Published paper(MC) My result 

1 9.8 9.827 

1.5 3.6 3.532 

2 4.5 4.418 

2.5 3.8 3.853 

3 4.0 4.080 

 

    For temperature 𝑇∗ = 𝑘𝐵𝑇/𝜀  =2.74, the excess free energy per particle 
𝛽𝐹𝑒𝑥

𝑁
 =

𝛽𝐹

𝑁
−

ln(𝜌𝑑3) + 1 is compared with the MC results [1-4] in Table 3. 
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Table 3. A comparison between MC results and the thesis results for the excess free energy 

per particle in liquid state at 𝑇∗ = 𝑘𝐵𝑇/𝜀 =2.74. 

𝜌∗ = 𝜌𝜎3 𝛽𝐹𝑒𝑥

𝑁
(MC) 

𝛽𝐹𝑒𝑥

𝑁
(Thesis) Deviation 

percentage 

η 

0.2 -0.04 -0.04 ~0 0.098 

0.4 -0.01 -0.01 ~0 0.194 

0.7 0.38 0.35 7.9% 0.337 

0.8 0.65 0.63 3.1% 0.384 

0.9 1.05 1.03 1.9% 0.429 

1.0 1.58 1.58 ~0 0.473 

1.1 2.31 2.27 1.7% 0.504 

    

Conclusions 

    As shown above, my computation on both solid and liquid states of a Lennard-Jones 

system are accurate when compared with published MC results [1, 4]. From these bulk free 

energies the phase coexistence conditions can be determined.  

   The way to find the coexistence conditions is called double tangent method, or the Maxwell 

construction. For a fixed temperature, we plot both 
𝛽𝐹

𝑁
(solid)-𝜌∗  curve and 

𝛽𝐹

𝑁
(liquid)- 𝜌∗ 

curve together, the common tangent line for these two curves will yield the coexistence 

densities and the slope of the common tangent line naturally leads to the coexistence pressure 

(see Fig.3).  
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Fig 3.   Free energies of liquid and solid phases against density at 𝑇∗ = 𝑘𝐵𝑇/𝜀 =2.74. 

    After drawing a double tangent line for both curves, we get the coexisting density at 

𝜌𝑠
∗ =1.122 for solid and 𝜌𝑙

∗ =1.236 for liquid, which agrees with the published result [1]  

𝜌𝑠
∗=1.155 for solid and 𝜌𝑙

∗=1.214 for liquid at 𝑇∗ = 𝑘𝐵𝑇/𝜀 =2.74. This result provides a clear 

demonstration on the accuracy of our perturbation theory. 
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CHAPTER 4. YUKAWA SYSTEMS 

 

    A  Yukawa pair potential can be written as [5, 6]: 

                   𝛷(𝑟) =
𝑄2

4𝜋𝜀𝑟
𝑒𝑥 𝑝 (−

1

𝜆𝐷
𝑟).                                                (41) 

If we introduce the Wigner-Seitz radius 𝑎 = (
3

4𝜋𝜌
)1/3 as the unit of distance and define two 

dimensionless parameters κ and Γ as following: 

               𝜅 = 𝑎/𝜆𝐷 and 𝛤 =
𝑄2

4𝜋𝜀𝑎𝑘𝑇
                                              (42) 

where 𝜆𝐷 is the Debye length. 

    Then a dimensionless Yukawa pair potential is: 

                𝛽𝛷(𝑟′) =
𝛤

𝑟′ 𝑒𝑥 𝑝(−𝜅𝑟′),                                            (43) 

where 𝑟′ = 𝑟/𝑎. 

   

Amendment on General Methods When Applied to Yukawa System 

    Most parts of the calculations for the Yukawa system are exactly the same as the Lennard-

Jones system. However, the Yukawa potential studied here is a pure repulsive potential and 

could be really soft for small 𝜅. Here is an example of how soft the Yukawa potential could 

be (see Fig. 4). 
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    Fig 4. The comparison of four kinds of potentials (left to right: 𝑦1 =
1

𝑟12 𝑦2 =
1

𝑟9 𝑦3 =

1

𝑟6 𝑦4 =
1

𝑟
𝑒𝑥𝑝 (−𝑟)), thus, 𝜅 = 1 is softer than 1/r6. 

 

 

    To develop a consistent perturbation theory for various 𝜅  of the Yukawa systems, we 

choose to use the following harder potential as the reference and the corresponding 

perturbation potential: 

𝛷𝑟(𝑟) =  {

1

𝑟12 −
1

𝑟𝑐
12 ,               𝑟 ≤ 𝑟𝑐            

0       ,                 𝑟 > 𝑟𝑐

                                  (44)      

𝛷𝑝(𝑟) = {
𝛷(𝑟) −

1

𝑟12 +
1

𝑟𝑐
12 ,               𝑟 ≤ 𝑟𝑐

𝛷(𝑟)        ,       𝑟 > 𝑟𝑐

                                     (45) 
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                                                             Issue of Units 

    The reason I would like to discuss the units issue here is because I struggled a lot on the 

unit. So I just want to make it clear about the unit for most important parameters. 

    As we mentioned at the beginning of this chapter, we have two dimensionless ratios κ and 

Γ. Hamaguchi et al [5,6] mentioned that the unit for energy should be 
𝑄2

4𝜋𝜀𝑎
 and a is the 

distance unit, thus we also use them as the units for energy and distance. That works for all of 

our distance and energy outputs.  

     

                             Results of Liquid Free Energy of Yukawa System 

    As we want to compare our results with the MD simulation results published before [5, 6, 

31], we will use their dimensionless parameters κ and Γ as the way to specify corresponding 

thermodynamic states which are related to the conventional thermodynamic states 

specification via temperature 𝑘𝐵T and density ρ𝑑3. 𝑘𝐵is the Boltzmann constant here. 

 

    We start with a series of conditions at Γ=200 and κ varies from 1.2 all the way to 4.0. As 

𝑄2

4𝜋𝜀𝑎
 is the unit of energy, we just assume it to be 1. Thus we have 𝛤 =

1

𝑘𝐵𝑇
= 200 and the 

temperature has been determined. 

 

    The next step we need to do is to determine the density as well as the packing fraction. 

According to Hansen et al [16], we choose the Wigner-Seitz radius a to be 4.05 ×

𝑎𝐵=2.1465Å, where 𝑎𝐵 is the Bohr radius. So the density now is 𝜌 =
3

4π𝑎3 = 0.024Å−3. 
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    The choice of 𝑟𝑐 as mentioned before usually starts with a large 𝑟𝑐, then we try a relatively 

smaller 𝑟𝑐 and run the code again. If the free energy we get finally converge as the 𝑟𝑐 keeps 

decreasing, that should be the right free energy as well as the good 𝑟𝑐 value. In my thesis 

here, 𝑟𝑐 = 1.69Å. 

    The following Table presents some of my results at Γ=200 and various κ. 

Table 4. Hard-sphere diameters, packing fractions and free energy at various κ 

κ d/a d (Å) η βF 

1.2 1.656 3.555 0.5646 116.59 

1.4 1.6486 3.539 0.557 71.6 

2.0 1.612 3.460 0.5205 17.4 

2.6 1.549 3.325 0.462 4.21 

3.0 1.491 3.200 0.412 1.58 

3.6 1.388 2.979 0.332 0.35 

4.0 1.313 2.818 0.281 0.126 

 

    The following Table presents a comparison between our results and the published MD 

results [5-6]. 
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Table 5, Comparison of MD result with our result under varied κ 

κ βF (MD) βF (Thesis) Absolute 

difference 

1.2 124.69 116.59 8.1 

1.4 79.5 71.6 7.9 

2.0 24.36 17.4 6.96 

2.6 8.58 4.21 4.37 

3.0 4.325 1.58 2.745 

3.6 1.19 0.35 0.84 

4.0 0.065 0.126 0.061 

 

Conclusions 

    According to the data we obtained, it seems that our result doesn’t agree with the MD 

results very well, especially the difference is quite large when κ is relatively small. The MD 

results also indicate that when Γ=200, κ<2.6 part is more stable in the bcc solid state. That’s 

why I think the reason for a big deviation may due to the liquid state for small κ is indeed a 

metastable state. 

    Meanwhile, the choice of Wigner-Seitz radius and 𝑟𝑐 may also present a problem for the 

computation of free energy. As the MD article doesn’t give a specific Debye length for the 

plasma and that parameter could vary a lot in different plasmas, thus it makes it much harder 

for us to give a good prediction on the value of Wigner-Seitz radius, which is still under 

investigation. 
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CHAPTER 5. GENERAL CONCLUSION 

 

General Discussions 

      According to the results presented in the Lennard-Jones potential part, we find that DFT 

method is not only very accurate and powerful for free energy calculations, but also not time-

consuming in contrast to MC or MD method.  

     For the Yukawa potential part, we change the pair potential to a much softer pure 

repulsive potential, thus we need to separate the pair potential to a relatively hard reference 

potential (usually not softer than 
1

𝑟4) and the corresponding perturbation free energy. After the 

separation of the potential energy, a series of convergence test on cutoff distance are required, 

which is different from the Lennard-Jones potential situation.  

      Also for soft pair potential like Yukawa potential, the HS-DFT theory might not work for 

all possible pair potentials. For example, it may not work when κ is very small due to the 

long-range nature of the potential. This may be the reason for the inaccuracy of my free 

energy calculations indicated by a relatively large difference between the published MC 

results and my calculated results. It is interesting to find out the limit of how soft the 

potential is where the perturbation theory still holds. 

 

Future Research 

 Based upon my experience of my research I would like to point out some future research 

directions. 
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      For the Lennard-Jones system, I would like to pursue studies on other kinds of crystal 

structures. For example, some natural materials with relatively more complex crystal 

structures could be interesting. By doing so, we might be able to know why the material 

exists in its particular crystal lattices.  So far, the systems I studied are one component 

systems, it will be interesting to study multicomponent systems, which represents most of 

materials in nature. 

 

      For the Yukawa system, my results are not good so far. I will be interested in pursuing 

better strategies to improve the calculations. Furthermore, it will be interesting to study the 

coexisting conditions of the Yukawa systems and to compare with the phase diagram of the 

Yukawa systems from simulations. It will also be rewarding to do further studies on the 

lowest limit of κ value under a specific Γ value. It will relate to how soft the pair potential 

could be if we still want to use the hard-sphere reference system to compute it. 
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